A Planar $P_2N_4S_2$ Ring: Preparation and X-ray Structures of $Et_4P_2N_4S_2Cl_2$ and $[R_4P_2N_4S_2][AlCl_4]_2$ (R = Et, Ph)

Michele Brock, Tristram Chivers,* Masood Parvez, and Rainer Vollmerhaus

Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Received May 17, 1996

Introduction

The 10 π -electron systems 1,5-R₄P₂N₄S₂, **1a**-**c**,¹ adopt folded structures with transannular S···S distances of 2.50–2.55 Å. A characteristic reaction of these inorganic heterocycles is the oxidative addition of halogens to give, in the case of **1b**, Ph₄P₂N₄S₂X₂ (X = Cl, Br).^{2a} The P₂N₄S₂ ring in Ph₄P₂N₄S₂-Br₂ has a chair structure, with planar PNP units and the sulfur atoms on either side of this plane, and essentially equal S–Br bond lengths.² The ring system **1b** may also be reduced to the corresponding dianion Ph₄P₂N₄S₂⁻² by 2 molar equiv of M[BEt₃H] (M = Li,³ Na,⁴ K⁴), but the structure of the 12 π -electron dianion in the insoluble alkali metal derivatives is unknown. The reagents **1** and **2** have been used to prepare a

variety of coordination complexes of the $P_2N_4S_2$ ring with transition metals either by oxidative addition reactions of 1^{4-6} or by metathetical reactions of the dianion $2.^{4,6,7}$

A large number of eight-membered sulfur diimide derivatives of the type **3** (E = B,⁸ Si,⁹ P(III),¹⁰ As,¹¹ Sb¹²) have been structurally characterized. In the majority of cases the $E_2N_4S_2$

- (a) Chivers, T.; Edwards, M.; Parvez, M. *Inorg. Chem.* **1992**, *31*, 1861.
 (b) Burford, N.; Chivers, T.; Codding, P. W.; Oakley, R. T. *Inorg. Chem.* **1982**, *21*, 982.
 (c) Burford, N.; Chivers, T.; Richardson, J. F. *Inorg. Chem.* **1983**, *22*, 1482.
- (2) (a) Burford, N.; Chivers, T.; Rao, M. N. S.; Richardson, J. F. *Inorg. Chem.* **1984**, *23*, 1946. (b) Marsh, R. E.; Slagle, K. M. *Inorg. Chem.* **1985**, *24*, 2115.
- (3) Chivers, T.; Cowie, M.; Edwards, M.; Hilts, R. W. Inorg. Chem. 1992, 31, 3349.
- (4) Chivers, T.; Edwards, M.; Gao, X.; Hilts, R. W.; Parvez, M.; Vollmerhaus, R. *Inorg. Chem.* **1995**, *34*, 5037.
- (5) (a) Chivers, T.; Dhathathreyan, K. S.; Ziegler, T. J. Chem. Soc., Chem. Commun. 1989, 86. (b) Chivers, T.; Edwards, M.; Meetsma, A.; van de Grampel, J. D.; van der Lee, A. Inorg. Chem. 1992, 31, 2156. (c) Chivers, T.; Hilts, R. W.; Parvez, M.; Ristic-Petrovic, D.; Hoffman, K. J. Organomet. Chem. 1994, 480, C4. (d) Chivers, T.; Hilts, R. W.; Parvez, M.; Ristic-Petrovic, D. Can. J. Chem. 1995, 73, 1380.
- (6) Chivers, T.; Hilts, R. W. Coord. Chem. Rev. 1994, 137, 201.
- (7) Chivers, T.; Gao, X.; Parvez, M. *Inorg. Chem.* 1995, *34*, 1681.
 (8) Schmid, G.; Gehrke, M.; Kolorz, H.-V.; Boese, R. *Chem. Ber.* 1993, *126*, 1781.
- (9) (a) Herberhold, M.; Gerstmann, S.; Milius, W.; Wrackmeyer, B. Z. Naturforsch., B 1993, 48, 1041. (b) Roesky, H. W.; Wiezer, H. Chem.-Ztg. 1973, 97, 661. (c) Ertl, G.; Weiss, J. Z. Naturforsch., B 1974, 29, 803.
- (10) (a) Chivers, T.; Lensink, C.; Meetsma, A.; van de Grampel, J. C.; de Boer, J. L. J. Chem. Soc., Chem. Commun. 1988, 335. (b) Chivers, T.; Dhathathreyan, K.; Lensink, C.; Meetsma, A.; van de Grampel, J. C.; de Boer, J. L. Inorg. Chem. 1989, 28, 4150.

ring assumes a boat conformation, but there are two examples in which a planar structure is adopted, apparently for steric reasons $[E = Si^tBu_2, {}^{9a}P(N^iPr_2)[Cr(CO)_5] {}^{10}]$. It was of interest, therefore, to prepare the eight π -electron dication $R_4P_2N_4S_2^{2+}$ (**3**, $E = PR_2^+$) for structural comparisons.

Experimental Section

Reagents and General Procedures. 1,5-Et₄P₂N₄S₂^{1a} and Ph₄P₂N₄S₂-Cl₂^{2a} [δ (³¹P)(CH₂Cl₂) +2.3 ppm] were prepared by the literature methods. Commercial SO₂Cl₂ and Al₂Cl₆ were purified by distillation and sublimation, respectively. Solvents were dried with the appropriate drying agents and distilled immediately before use. All reactions and the manipulation of moisture-sensitive products were carried out under an atmosphere of dry nitrogen or argon.

Instrumentation. ²⁷Al and {¹H}³¹P NMR spectra were recorded on a Bruker AM-400 spectrometer. Chemical shifts are given relative to Al(NO₃)₃ in D₂O and 85% H₃PO₄. Elemental analyses were provided by the Canadian Microanalytical Service, Vancouver, BC, Canada, and by the Analytical Services Laboratory, Department of Chemistry, The University of Calgary. Infrared spectra were obtained on a Mattson 4030 FTIR spectrophotometer.

Preparation of Et₄P₂N₄S₂Cl₂ (4a). Neat SO₂Cl₂ (0.202 g, 1.50 mmol) was added dropwise, by syringe, to a stirred solution of 1,5-Et₄P₂N₄S₂ (0.449 g, 1.50 mmol) in CH₂Cl₂ (20 mL) at 23 °C. The initial addition produces a red solution which reverts to a pale yellow when a stoichiometric amount of SO₂Cl₂ has been added. After 1 h, the solvent and volatile products were removed by vacuum to give a yellow solid, which was recrystallized from acetonitrile (~10 mL) to give pale yellow crystals of Et₄P₂N₄S₂Cl₂ (0.325 g, 0.880 mmol, 59%). Anal. Calcd for C₈H₂₀N₄P₂S₂Cl₂: C, 26.02; H, 5.46; N, 15.17. Found: C, 25.71; H, 5.63; N, 14.74. IR (Nujol, cm⁻¹): 1274 w, 1217 s, 1172 s, 1085 m, 1019 m, 999 w, 981 w, 777 s, 742 m, 727 w, 666 w, 459 m, 406 m, 383 w, 365 w, 358 w, 341 w, 313 w, 279 m, 246 m, 225 m, 206 s. NMR spectra (δ, ppm) (CD₂Cl₂): {¹H}³¹P 27.4. ¹H 1.25 [d of t, ³J(¹H⁻³¹P) = 20.9 Hz, ³J(¹H⁻¹H) = 7.6 Hz], 2.26 [d of q, ³J(¹H⁻³¹P) = 14.8 Hz, ³J(¹H⁻¹H) = 7.4 Hz].

When a sample of **4a** is heated to 80 °C it turns orange; at 85 °C it becomes red and then deepens in color until it melts at 115-116 °C.

Preparation of [Et₄P₂N₄S₂][AlCl₄]₂ (5a). Solid aluminum chloride (0.723 g, 5.42 mmol) was added to a stirred solution of Et₄P₂N₄S₂Cl₂ (1.00 g, 2.71 mmol) in CH₂Cl₂ (20 mL) at 23 °C. A yellow precipitate of [Et₄P₂N₄S₂][AlCl₄]₂ (1.04 g, 1.63 mmol, 60%) was separated by filtration. Anal. Calcd for C₈H₂₀N₄Al₂Cl₈S₂: C, 15.11; H, 3.17; N, 8.81. Found: C, 14.26; H. 3.26; N, 8.24. ¹H NMR (THF): δ (ppm) 1.23 [d of t, ³J(¹H-³P) = 20.8 Hz, ³J(¹H-¹H) = 7.6 Hz], 2.28 [d of q, ²J(¹H-³P) = 14.8 Hz, ³J(¹H-¹H) = 7.5 Hz]. {¹H}³¹P NMR (CH₂Cl₂): δ (ppm) 32.2, ²⁷Al NMR (CH₂Cl₂): δ (ppm) 102.4. IR (Nujol, cm⁻¹): 1340 s, 1330 s, 1241 s, 1224 m, 1098 w, 1038 m, 989 w, 774 m, 741 w, 734 s, 502 vs, 462 vs, 398 vs

Preparation of [Ph₄P₂N₄S₂][AlCl₄]₂ (5b). Orange crystals of [Ph₄P₂N₄S₂][AlCl₄]₂ were obtained in 29% yield from the reaction of Ph₄P₂N₄S₂Cl₂ (0.146 g, 0.260 mmol) and AlCl₃ (0.069 g, 0.520 mmol) by using a procedure similar to that described for the preparation of **5a**. Anal. Calcd for C₂₄H₂₀N₄Al₂Cl₈S₂: C, 34.81; H, 2.43; N, 6.77. Found: C, 34.85; H, 3.46; N, 6.47. {¹H}³¹P NMR (CH₂Cl₂): δ (ppm) 7.3. ²⁷Al NMR (CH₂Cl₂): δ (ppm) 102.8. IR (cm⁻¹): 1260 vs, 1120 m, 1101 m, 899 w, 796 m, 619 m, 504 m.

X-ray Analyses. All measurements were made on a Rigaku AFC6S diffractometer using the $\omega - 2\theta$ technique and Mo K α radiation. A colorless block of **4a** was obtained by recrystallization from acetonitrile at -20 °C. Pale yellow prisms of **5a** and **5b** were formed in CH₂Cl–hexanes and CH₂Cl₂ solutions, respectively, at 23 °C. Crystals were

(12) Herberhold, M.; Schamel, K. Z. Naturforsch., B 1988, 43, 1274.

^{(11) (}a) Scherer, O. J.; Wies, R. Angew. Chem., Int. Ed. Engl. 1971, 10, 812. (b) Herberhold, M.; Schamel, K. J. Organomet. Chem. 1988, 346, 13. (c) Gieren, A.; Betz, H.; Hübner, T.; Lamm, V.; Herberhold, M.; Guldner, K. Z. Anorg. Allg. Chem. 1984, 513, 160. (d) Alcock, N. W.; Holt, E. M.; Kuyper, J.; Mayerle, J. J.; Street, G. B. Inorg. Chem. 1979, 18, 2235. (e) Spang, C.; Edelmann, F. T.; Noltemeyer, M.; Roesky, H. W. Chem. Ber. 1989, 122, 1247.

Table 1. Crystallographic Data for 4a, 5a, and 5b

	4a	5a	5b
formula	C ₈ H ₂₀ N ₄ P ₂ S ₂ Cl ₂	$_{2}C_{8}H_{20}N_{4}P_{2}S_{2}Cl_{8}A$	$I_2 C_{25}H_{22}N_4P_2S_2CI_{10}AI_2$
fw	369.25	635.92	913.04
cryst size,	$0.80 \times 0.60 \times$	$0.25 \times 0.18 \times$	$0.26 \times 0.20 \times$
mm ³	0.40	0.12	0.12
space group	<i>P</i> 1 (No. 2)	<i>P</i> 1 (No. 2)	<i>P</i> 1 (No. 2)
<i>a</i> , Å	8.417(5)	8.589(1)	14.453(5)
<i>b</i> , Å	13.456(6)	10.991(1)	15.320(5)
<i>c</i> , Å	8.130(4)	7.574(2)	9.890(2)
α, deg	99.32(4)	110.04(1)	108.82(2)
β , deg	113.64(4)	96.75(1)	93.47(2)
γ , deg	96.58(4)	98.13(1)	69.47(2)
V, Å ³	815.8(9)	654.3(2)	1937(1)
Z	2	1	2
T, °C	-103	-103	-73
λ, Å	0.71069	0.71069	0.71069
ρ_{calcd} , g cm ⁻³	1.503	1.614	1.565
μ cm ⁻¹	8.39	12.13	9.80
2θ range (deg)	4-50	2 - 40	2-50
scan speed	16	4	4
$(\deg \min^{-1})$			
no. of unique	2822	1704	6896
data			
no. of obsd	2373 ^a	1143 ^a	1186 ^a
data			
no. of parms refined	163	118	281
R^b	0.030	0.047	0.055
\mathbf{R}_{w}^{c}	0.039	0.058	0.046
goodness of fit	2.28	2.45	1.43
$\frac{\text{max/min}}{\text{resid dens}}$ $(\rho \text{ A}^{-3})$	0.37/-0.36	0.53/-0.47	0.46/-0.39
<i>a I ></i>	$3\sigma(I)$. ^b R =	$\Sigma F_{ m o} $ –	$ F_{\rm c} /\sum F_{\rm o} . \ ^{c} R_{\rm w} =$
$\sqrt{(\Sigma w(F_o - I_o))}$	$F_{\rm c})^2/\sum w F_{\rm o}^2$].		

Table 2. Atomic coordinates and B_{eq} for 4a

atom	x	у	z	$B_{\rm eq}{}^a$
Cl(1)	-0.0957(1)	0.05387(6)	0.2732(1)	2.94(2)
Cl(2)	0.5694(1)	0.34197(7)	0.9125(1)	3.45(2)
S(1)	-0.07267(9)	0.22390(6)	0.30846(10)	1.80(1)
S(2)	0.35791(10)	0.18248(6)	0.74675(10)	1.93(2)
P(1)	0.29825(9)	0.21838(6)	0.38265(10)	1.58(2)
P(2)	0.04808(9)	0.28493(6)	0.70067(10)	1.58(1)
N(1)	0.1202(3)	0.2635(2)	0.3364(3)	1.93(5)
N(2)	-0.1001(3)	0.2568(2)	0.4850(3)	1.89(5)
N(3)	0.1929(3)	0.2125(2)	0.7618(3)	1.89(5)
N(4)	0.3640(3)	0.1638(2)	0.5583(3)	1.87(5)
C(1)	0.4696(4)	0.3262(2)	0.4325(4)	2.33(7)
C(2)	0.4256(5)	0.3894(3)	0.2864(5)	3.44(8)
C(3)	0.2812(4)	0.1241(2)	0.1904(4)	2.05(6)
C(4)	0.4484(4)	0.0824(3)	0.2186(5)	3.52(8)
C(5)	0.1527(4)	0.4175(2)	0.7606(4)	2.45(7)
C(6)	0.0228(5)	0.4904(3)	0.7378(5)	3.53(8)
C(7)	-0.0765(4)	0.2666(2)	0.8300(4)	2.24(7)
C(8)	-0.1650(4)	0.1555(3)	0.7929(5)	2.84(8)

 ${}^{a}B_{eq} = (8/3)\pi^{2}(U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aa^{*}bb^{*}$ $\cos \gamma + 2U_{13}aa^*cc^* \cos \beta + 2U_{23}bb^*cc^* \cos \alpha).$

mounted in a glass capillary (4a, 5a) or on a glass fiber coated with epoxy (5b). Crystal data and processing parameters for 4a, 5a and 5b are given in Table 1.

The data were corrected for Lorentz and polarization effects. The positional parameters are given in Tables 2-4. The structures were solved by direct methods (4a^{14a}, 5a^{14b}, 5b^{14b}) and expanded using Fourier techniques.¹⁵ The non-H atoms of 4a and 5a were refined anisotropically. For 5b, the carbon atoms were allowed isotropic temperature

Table 3. Atomic Coordinates and B_{eq} for 5a

atom	x	у	z	$B_{ m eq}{}^a$
Cl(1)	-0.061(3)	0.1088(2)	-0.0251(3)	2.86(6)
Cl(2)	-0.2077(3)	0.1795(2)	0.4679(3)	2.78(6)
Cl(3)	-0.0301(3)	0.3906(2)	0.2522(4)	3.11(6)
Cl(4)	-0.4305(3)	0.3716(2)	0.3039(3)	2.53(6)
S(1)	-0.3049(3)	0.4310(2)	0.8697(3)	2.13(6)
P(1)	-0.6602(3)	0.3184(2)	0.8133(3)	1.71(5)
Al(1)	-0.2411(3)	0.2597(3)	0.2490(4)	1.98(6)
N(1)	-0.4682(8)	0.3427(6)	0.8024(9)	1.8(2)
N(2)	-0.2757(8)	0.5647(7)	1.0286(10)	1.8(2)
C(1)	-0.7093(11)	0.1743(8)	0.8687(12)	2.1(2)
C(2)	-0.8873(11)	0.1299(9)	0.8536(13)	2.6(2)
C(3)	-0.7645(11)	0.2962(9)	0.5864(13)	2.6(2)
C(4)	-0.7491(11)	0.1708(9)	0.4270(13)	2.9(2)

 ${}^{a}B_{eq} = (8/3)\pi^{2}(U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aa^{*}bb^{*}$ $\cos \gamma + 2U_{13}aa^*cc^* \cos \beta + 2U_{23}bb^*cc^* \cos \alpha).$

Table 4. Atomic coordinates and B_{eq} for 5b

atom	x	У	z	$B_{\rm eq}$
Cl(1)	0.2863(6)	0.7133(6)	0.620(1)	10.2(4)
Cl(2)	0.1984(6)	0.6539(5)	0.8816(8)	7.7(3)
Cl(3)	0.2109(4)	0.5122(5)	0.5261(7)	4.6(2)
Cl(4)	0.4268(4)	0.5016(5)	0.7070(7)	4.4(2)
Cl(5)	0.8536(4)	-0.0914(4)	0.5800(7)	4.0(2)
Cl(6)	0.7855(4)	0.0902(5)	0.9052(7)	4.1(2)
Cl(7)	0.6767(5)	0.1390(5)	0.6019(7)	4.5(2)
Cl(8)	0.6157(5)	-0.0197(5)	0.7267(7)	5.2(2)
Cl(9)	0.0635(5)	0.3305(5)	0.3626(8)	6.2(2)
Cl(10)	0.0869(7)	0.4119(6)	0.1469(8)	8.1(3)
S(1)	0.6288(4)	0.3883(4)	0.8730(7)	2.7(2)
S(2)	0.9620(4)	0.1244(4)	0.1907(7)	2.6(2)
P(1)	0.5619(5)	0.6089(4)	1.0071(7)	2.3(2)
P(2)	0.9394(4)	-0.0739(5)	0.1028(7)	2.3(2)
Al(1)	0.282(6)	0.5957(6)	0.6809(9)	4.3(2)
Al(2)	0.7323(5)	0.0294(5)	0.7041(8)	3.0(2)
N(1)	0.625(1)	0.495(1)	0.918(2)	2.1(5)
N(2)	0.545(1)	0.362(1)	0.912(2)	2.4(5)
N(3)	0.934(1)	0.040(1)	0.190(2)	2.6(5)
N(4)	1.015(1)	0.123(1)	0.063(2)	2.3(5)
C(1)	0.643(2)	0.645(1)	1.142(2)	2.2(5)
C(2)	0.743(2)	0.605(2)	1.110(3)	4.4(6)
C(3)	0.801(2)	0.644(2)	1.216(3)	5.4(7)
C(4)	0.760(2)	0.717(2)	1.332(3)	4.0(6)
C(5)	0.660(2)	0.761(2)	1.366(3)	4.7(6)
C(6)	0.598(2)	0.724(2)	1.266(3)	3.3(5)
C(7)	0.537(1)	0.676(1)	0.890(2)	1.6(5)
C(8)	0.590(1)	0.641(1)	0.759(2)	2.3(5)
C(9)	0.575(2)	0.699(2)	0.668(3)	6.1(7)
C(10)	0.503(2)	0.787(2)	0.709(3)	3.6(6)
C(11)	0.451(2)	0.827(2)	0.833(3)	3.8(6)
C(12)	0.466(2)	0.768(2)	0.924(2)	3.0(5)
C(13)	1.011(1)	-0.152(1)	0.199(2)	1.9(5)
C(14)	1.051(2)	-0.121(2)	0.323(3)	3.4(6)
C(15)	1.098(2)	-0.184(2)	0.403(3)	4.5(6)
C(16)	1.106(2)	-0.279(2)	0.345(3)	3.8(6)
C(17)	1.066(2)	-0.313(2)	0.224(3)	5.5(7)
C(18)	1.015(2)	-0.247(2)	0.150(3)	4.4(6)
C(19)	0.819(2)	-0.075(1)	0.101(2)	2.7(5)
C(20)	0.762(2)	-0.038(2)	0.227(2)	2.5(5)
C(21)	0.673(2)	-0.051(2)	0.233(2)	3.6(6)
C(22)	0.639(2)	-0.102(2)	0.115(3)	3.8(6)
C(23)	0.693(2)	-0.142(2)	-0.012(3)	4.6(6)
C(24)	0.783(2)	-0.129(2)	-0.016(2)	3.6(6)
C(25)	0.024(2)	0.426(2)	0.297(3)	6.1(7)

 ${}^{a}B_{eq} = (8/3)\pi^{2}(U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aa^{*}bb^{*}$ $\cos \gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha).$

factors and the unit cell contained one molecule of CH2Cl2 per formula unit. Hydrogen atoms were included at geometrically idealized

⁽¹³⁾ Chivers, T.; Kumaravel, S. S.; Parvez, M.; Rao, M. N. S. Inorg. Chem. 1992, 31, 1274.

^{(14) (}a) SIR92: Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Polidori, G. J. Appl. Crystallogr., in preparation. (b) SAPI91: Fan, H-F. Structure Analysis Programs with Intelligent Control, Rigaku Corp., Tokyo, Japan, 1991.

⁽¹⁵⁾ DIRDIF94: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994.

positions with C–H 0.95 Å and were not refined. In the refinement cycles, weights were derived from counting statistics. Scattering factors were those of Cromer and Waber,¹⁶ and allowance was made for anomalous dispersion.¹⁷ All calculations were performed using teX-san.¹⁸

Results and Discussion

Synthesis of $Et_4P_2N_4S_2Cl_2$ and $[Et_4P_2N_4S_2][AlCl_4]_2$. The *S*,*S'*-dichloro derivative **4a** was prepared, in a manner similar to that described for Ph₄P₂N₄S₂Cl₂,^{2a} by the oxidative addition of Cl₂ (as SO₂Cl₂) to 1,5-Et₄P₂N₄S₂ in dichloromethane at 23 °C (eq 1). Compound **4a** is a moisture-sensitive, pale yellow

$$\operatorname{Et}_{4}\operatorname{P}_{2}\operatorname{N}_{4}\operatorname{S}_{2} + \operatorname{SO}_{2}\operatorname{Cl}_{2} \xrightarrow{-\operatorname{SO}_{2}} \operatorname{Et}_{4}\operatorname{P}_{2}\operatorname{N}_{4}\operatorname{S}_{2}\operatorname{Cl}_{2}$$
(1)

solid. An excess of the chlorinating agent should be avoided since it will give rise to the thermally unstable trichloride salt [Et₄P₂N₄S₂Cl][Cl₃] (cf. [(Me₂N)₂C₂N₄S₂Cl][Cl₃]).¹⁹ The chlorination reaction is readily monitored by observing the disappearance of the characteristic ³¹P NMR resonance at 136.1 ppm for 1,5-Et₄P₂N₄S₂^{1a} and the appearance of a new signal at 27.4 ppm for **4a**. The treatment of **4a** or **4b** with 2 molar equiv of AlCl₃ in CH₂Cl₂ at 23 °C produces [R₄P₂N₄S₂][AlCl₄]₂ (**5a**, R = Et; **5b**, R = Ph) as orange, moisture sensitive crystals (eq 2). The ³¹ P NMR resonances of **4a** and **4b** are shifted ~5

$$R_4P_2N_4S_2Cl_2 + 2AlCl_3 \rightarrow [R_4P_2N_4S_2][AlCl_4]_2$$
(2)

$$4a, R = Et \qquad 5a, R = Et
$$4b, R = Ph \qquad 5b, R = Ph$$$$

ppm to high frequency upon formation of the corresponding dications $R_4P_2N_4S_2^{2+}$. The ²⁷Al NMR spectra of **5a** and **5b** exhibit singlets at ~103 ppm, characteristic of the AlCl₄⁻ counterion.²⁰

Crystal and Molecular Structure of Et₄P₂N₄S₂Cl₂. Two aspects of the structure of 4a are of interest in comparison to those of other S,S'-disubstituted derivatives of the P₂N₄S₂ ring.²¹ The first concerns the conformation of the eight-membered ring. Figure 1 shows an ORTEP drawing of 4a with the atomic numbering scheme. In contrast to the long chair conformation of the $P_2N_4S_2$ ring in $Ph_4P_2N_4S_2Br_2$ ² in which the two P and four N atoms are almost planar and the S atoms lie ~ 0.5 Å out (and on opposite sides) of this plane, the eight-membered ring in 4a is best described as a distorted boat with the phosphorus atoms in the prow and stern positions. The orientation and length of the exocyclic S-Cl bonds in 4a provide the second focus of interest. The pertinent bond lengths and bond angles are given in Table 5. The structure of 4a resembles that of Ph₄P₂N₄S₂Br₂² in that the S-Cl bonds adopt a *trans (axial,* axial) arrangement. However, there is a substantial difference $(\sim 0.28 \text{ Å})$ in the S–Cl bond distances for 4a whereas the S–Br bond lengths in Ph₄P₂N₄S₂Br₂ are equal.² The values of 2.235-(1) and 2.419(1) Å for S(1)-Cl(1) and S(2)-Cl(2), respectively, may be compared with the corresponding S-Cl distance of 2.18

- (16) Cromer, D. T.; Waber, J. T. International Tables for Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A, pp 71–98.
- (17) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
- (18) teXsan: Single Crystal Structure Analysis Software, Version 1.2. Molecular Structure Corp., The Woodlands, TX, 1992.
- (19) Boeré, R. T.; Cordes, A. W.; Craig, S. L.; Oakley, R. T.; Reed, R. W. J. Am. Chem. Soc. **1987**, 109, 868.
- (20) Apblett, A.; Chivers, T.; Fait, J. R. Inorg. Chem. 1990, 29, 1643.
- (21) (a) Chivers, T.; Gao, X.; Hilts, R. W.; Parvez, M.; Vollmerhaus, R. *Inorg. Chem.* 1995, 34, 1180. (b) Chivers, T.; Hilts, R. W.; Parvez, M.; Vollmerhaus, R. *Inorg. Chem.* 1994, 33, 3459. (c) Chivers, T.; Kumaravel, S. S.; Meetsma, A.; van de Grampel, J. C.; van der Lee, A. *Inorg. Chem.* 1990, 29, 4591.

Figure 1. ORTEP diagram and atomic numbering scheme for $Et_4P_2N_4S_2Cl_2$ (4a).

Table 5. Selected Bond Distances (Å) and Bond Angles (deg) for $Et_4P_2N_4S_2Cl_2$ (4a)

Bond Distances					
Cl(1) - S(1)	2.235(1)	Cl(2)-S(2)	2.419(1)		
S(1) - N(1)	1.561(3)	S(1) - N(2)	1.547(2)		
S(2) - N(3)	1.535(3)	S(2) - N(4)	1.535(2)		
P(1) - N(1)	1.608(3)	P(1) - N(4)	1.638(2)		
P(2) - N(2)	1.642(2)	P(2) - N(3)	1.621(2)		
P(1) - C(1)	1.792(3)	P(1) - C(3)	1.791(3)		
P(2) - C(5)	1.792(3)	P(2)-C(7)	1.781(3)		
	Bond A	Angles			
Cl(1) - S(1) - N(1)	104.06(9)	Cl(1) - S(1) - N(2)	103.3(1)		
N(1) - S(1) - N(2)	112.8(1)	Cl(2) - S(2) - N(3)	100.1(1)		
Cl(2) - S(2) - N(4)	102.8(1)	N(3) - S(2) - N(4)	119.3(1)		
N(1) - P(1) - N(4)	117.6(1)	N(1) - P(1) - C(1)	105.6(1)		
N(1) - P(1) - C(3)	111.6(1)	N(4) - P(1) - C(1)	107.1(1)		
N(4) - P(1) - C(3)	105.3(1)	C(1) - P(1) - C(3)	109.5(1)		
N(2) - P(2) - N(3)	118.0(1)	N(2) - P(2) - C(5)	108.5(1)		
N(2) - P(2) - C(7)	104.7(1)	N(3) - P(2) - C(5)	111.3(1)		
N(3) - P(2) - C(7)	104.4(1)	C(5) - P(2) - C(7)	109.4(1)		
S(1) - N(1) - P(1)	136.6(2)	S(1) - N(2) - P(2)	128.3(2)		
S(2) - N(3) - P(2)	144.8(2)	S(2) - N(4) - P(1)	134.7(2)		

Å for S₄N₄Cl₂.²² These data imply a tendency toward ionization of the S(2)–Cl(2) bond, cf. 2.357(2) Å for d(S–Cl) in the lower homologue Ph₄P₂N₃SCl for which significant ionic character has been invoked.²³ The structure of **4a** is reminiscent of those previously reported for the salts [(Me₂N)₂C₂N₄S₂Cl][X].¹⁹ Although the structure for the *S*,*S*'-dichloro derivative (X = Cl) is unknown,²⁴ the (Me₂N)₂C₂N₄S₂Cl⁺ cation in the Cl₃⁻ salt exhibits an S–Cl distance of 2.290(3) Å and weak (S•••Cl) interactions involving the cationic sulfur center (Figure 2).¹⁹ For comparison, the corresponding interactions in **4a** are also illustrated in Figure 2. Thus the structure of **4a** can be thought to involve an incipient Et₄P₂N₄S₂Cl⁺ cation, and it provides further support for the proposed polar reaction pathway for the oxidation of dithiatetrazocines by halogens.¹⁹

The unequal S–Cl bond distances give rise to significant differences in the geometrical parameters of the NSN units on opposite sides of the $P_2N_4S_2$ ring in **4a**. Thus the mean S–N bond lengths involving the incipient cationic center S(2) are 1.535(3) Å compared to 1.554(3) Å for S(1)–N and the corresponding NSN bond angles are 119.3(1) and 112.8(1)°, respectively. There is a wide variation in the endocyclic bond angles at the four nitrogen atoms, which fall within the range

- (23) Burford, N.; Chivers, T.; Hojo, M.; Laidlaw, W. G.; Richardson, J. F.; Trsic, M. Inorg. Chem. 1985, 24, 709.
- (24) Chivers, T.; Richardson, J. R.; Smith, N. R. M. Inorg. Chem. 1986, 25, 47.

⁽²²⁾ Zak, Z. Acta Crystallogr., Sect. B 1981, B37, 23. The R and R_w values for this structure were 0.086 and 0.123, respectively, and no ESDs were given.

		Dona Dista				
_	5b		5b			
5a		molecule	molecule A		molecule B	
S(1)-N(1)	1.509(7)	S(1)-N(1)	1.53(2)	S(2)-N(3)	1.48(2)	
S(1) - N(2)	1.511(7)	S(1) - N(2)	1.50(2)	S(2) - N(4)	1.51(2)	
P(1) - N(1)	1.650(7)	P(1) - N(1)	1.63(2)	P(2)-N(3)	1.65(2)	
$P(1) - N(2^*)$	1.639(7)	$P(1) - N(2^*)$	1.64(2)	P(2)-N(4**)	1.64(2)	
P(1) - C(1)	1.781(9)	P(1) - C(1)	1.80(2)	P(2)-C(13)	1.77(2)	
P(1) - C(3)	1.762(9)	P(1) - C(7)	1.73(2)	P(2)-C(19)	1.74(2)	
Cl(1)-Al(1)	2.116(4)	Cl(1)-Al(1)	2.091(10)	Cl(5)-Al(2)	2.127(9)	
Cl(2)-Al(1)	2.138(3)	Cl(2)-Al(1)	2.15(1)	Cl(6)-Al(2)	2.129(9)	
Cl(3)-Al(1)	2.141(4)	Cl(3)-Al(1)	2.133(9)	Cl(7)-Al(2)	2.131(9)	
Cl(4)-Al(1)	2.169(4)	Cl(4)-Al(1)	2.128(9)	Cl(8)-Al(2)	2.121(9)	
	Bond Angles					
5b						
5a		molocula	•	molecule P		
		Inolecule A	1	Indiecule B		
N(1)-S(1)-N(2)	121.6(4)	N(1)-S(1)-N(2)	122.0(9)	N(3) - S(2) - N(4)	121.7(10)	
$N(1) - P(1) - N(2^*)$	117.6(3)	$N(1) - P(1) - N(2^*)$	120.7(8)	$N(3) - P(2) - N(4^{**})$	117.8(9)	
$S(1) - N(2) - P(1^*)$	151.2(5)	S(1) - N(1) - P(1)	145(1)	S(2) - N(3) - P(2)	147(1)	
S(1) - N(1) - P(1)	149.6(5)	$S(1) = N(2) = P(1^*)$	151(1)	$S(2) = N(4) = P(2^*)$	152(1)	
N(1) - P(1) - C(1)	108.6(4)	N(1) - P(1) - C(1)	104.1(9)	N(3) - P(2) - C(13)	108.5(9)	
N(1) - P(1) - C(3)	106.7(4)	N(1) - P(1) - C(7)	108.0(10)	N(3) - P(2) - C(19)	107.5(10)	
$N(2^*) - P(1) - C(1)$	105.8(4)	$N(2^*) - P(1) - C(1)$	107.7(9)	$N(4^{**}) - P(2) - C(13)$	107.5(10)	
$N(2^*) - P(1) - C(3)$	107.4(4)	$N(2^*) - P(1) - C(7)$	104.7(9)	$N(4^{**}) - P(2) - C(19)$	106(1)	
C(1) - P(1) - C(3)	110.7(4)	C(1) - P(1) - C(7)	111.6(9)	C(13) - P(2) - C(19)	108.5(10)	
Cl(1)-Al(1)-Cl(2)	111.3(1)	Cl(1)-Al(1)-Cl(2)	108.6(5)	Cl(5)-Al(2)-Cl(6)	107.2(4)	
Cl(1)-Al(1)-Cl(3)	108.4(2)	Cl(1)-Al(1)-Cl(3)	109.7(4)	Cl(5) - Al(2) - Cl(7)	110.9(4)	
Cl(1)-Al(1)-Cl(4)	109.6(2)	Cl(1)-Al(1)-Cl(4)	112.9(4)	Cl(5)-Al(2)-Cl(8)	109.7(4)	
Cl(2) - Al(1) - Cl(3)	111.9(2)	Cl(2)-Al(1)-Cl(3)	107.8(4)	Cl(6) - Al(2) - Cl(7)	109.4(4)	
Cl(2) - Al(1) - Cl(4)	107.4(2)	Cl(2)-Al(1)-Cl(4)	108.2(4)	Cl(6) - Al(2) - Cl(8)	112.1(4)	
Cl(3)-Al(1)-Cl(4)	108.2(1)	Cl(3)-Al(1)-Cl(4)	109.6(4)	Cl(7)-Al(2)-Cl(8)	107.7(4)	

Bond Distances

Table 6. Selected Bond Distances (Å) and Bond Angles (deg) for $[Et_4P_2N_4S_2][AlCl_4]_2$ (5a) and $[Ph_4P_2N_4S_2][AlCl_4]_2$ (5b)^a

^{*a*} Symmetry codes: (*) 1 - x, 1 - y, 2 - z; (**) 2 - x, -y, -z.

Figure 2. Schematic representation of S-Cl interactions in $[(Me_2N)_2-C_2N_4SCl][Cl_3]$ and $Et_4P_2N_4S_2Cl_2.$

128.3(2)–144.8(2)°. The mean P–N distance of 1.627(3) Å [range 1.608(3)–1.642(2)°] is not significantly different from the value of 1.616(8) Å found for the parent ring system 1a.^{1a} The mean NPN bond angle in 4a is, however, substantially larger than that in 1a [117.8(1) vs 109.8(4)°^{1a}] presumably owing to the loss of the constraining influence of the transannular S···S interaction in 1a.

The markedly different S–Cl bond distances should give rise to two characteristic S–Cl stretching vibrations in the IR spectrum of **4a**. On the basis of a recent correlation between ν (S–Cl) and d(S–Cl) reported by Passmore et al.,²⁵ we tentatively assign the IR bands at 358 and 225 cm⁻¹ to S–Cl stretches.

Crystal and Molecular Structures of $[R_4P_2N_4S_2][AlCl_4]_2$ (5a, R = Et; 5b, R = Ph). The X-ray structural determinations showed that 5a and 5b consist of noninteracting, planar $R_4P_2N_4S_2^{2+}$ cations and tetrahedral $AlCl_4^-$ anions. Figure 3 shows an ORTEP drawing and the atomic numbering scheme

Figure 3. ORTEP diagram and atomic numbering scheme for the cation in $[Et_4P_2N_4S_2][AlCl_4]_2$ (5a).

for the dication in **5a**. Pertinent bond distances and bond angles for **5a** and **5b** are given in Table 5. The $\text{Et}_4P_2N_4S_2^{2+}$ cation represents only the third example of a planar ring system of the type **3**. In the other two cases ($\text{E} = \text{Si'Bu}_2$,^{9a} P(NⁱPr_2)[Cr-(CO)₅]¹⁰), the planarity is apparently enforced by the steric bulk of the substituents E in these eight-membered rings. In the present examples ($\text{E} = \text{Et}_2\text{P}^+$, Ph_2P^+), however, steric constraints do not provide a plausible explanation of planarity. On the other hand, the metrical parameters for $\text{Et}_4\text{P}_2\text{N}_4\text{S}_2^{2+}$ supply no evidence for the delocalized π -bonding that might be expected to ensue from the combination of planarity and the

⁽²⁵⁾ Brownridge, S.; Cameron, T. S.; Passmore, J.; Schatte, G.; Way, T. C. J. Chem. Soc., Dalton Trans. **1996**, 2553.

Figure 4. ORTEP diagram and atomic numbering scheme for the $Ph_4P_2N_4S_2^{2+}$ cation in molecule A of **5b**. For molecule B, P(1) becomes P(2), S(1) becomes S(2), and N(1) and N(2), are N(3) and N(4).

2+ charge. The mean S–N distances of 1.510(7) Å are typical for localized *Z*,*Z* sulfur diimide (–N=S=N–) groups²⁶ consistent with the valence bond representation illustrated below (cf. d(S–N) = 1.55 Å in the delocalized, ten π -electron dication S₄N₄²⁺).²⁷ Surprisingly, the mean P–N bond length of 1.645-(7) Å is somewhat longer than the corresponding value of 1.616-(8) Å reported for the neutral ring system **1a**.^{1a} The mean endocyclic bond angles at S and N in Et₄P₂N₄S₂²⁺ are 121.6(4)

(28) McGeachin, H. M.; Tromans, R. R. J. Chem. Soc. 1961, 4777.

and 150.4(5)°, respectively. The large value of the latter is presumably enforced by the planarity of the eight-membered ring (cf. 147.2° in N₄P₄F₈).²⁸

The unit cell of **5b** contains two different $Ph_4P_2N_4S_2^{2+}$ cations which differ with respect to the different orientations of the two Ph groups attached to the same phosphorus atom. This difference is manifested in a disparity of ~30° in the torsion angles C(1)-P(1)-C(7)-C(8) vs C(13)-P(2)-C(19)-C(20) [96(1) vs 64(2)°] and C(6)-C(1)-P(1)-C(7) vs C(18)-C(13)-P(2)-C(19) [87(1) vs 57(2)°]. An ORTEP diagram of one of the Ph₄P₂N₄S_{2²⁺} cations is illustrated in Figure 4. Although the quality of the X-ray structure of **5b** is relatively poor, it is clear from the data given in Table 6 that the Ph₄P₂N₄S_{2²⁺} cation exhibits the same structural trends as observed for Et₄P₂N₄S_{2²⁺}.

The dications $R_4P_2N_4S_2^{2+}$ (R = Et, Ph) provide an alternative to 1 and 2 for the synthesis of transition metal complexes of the $P_2N_4S_2$ ring, e.g., by reaction with metal carbonyl anions.

Acknowledgment. We thank NSERC (Canada) for financial support and Dr. R. W. Hilts for preliminary investigations of the preparation of Et₄P₂N₄S₂Cl₂.

Supporting Information Available: Tables giving X-ray experimental details, atomic coordinates for hydrogen atoms, anisotropic thermal parameters, bond distances, bond angles, and torsion angles (22 pages). Ordering information is given on any current masthead page.

IC960567+

⁽²⁶⁾ Gieren, A.; Betz, H.; Hübner, T.; Lamm, V.; Herberhold, M.; Guldner, K. Z. Anorg. Allg. Chem. 1984, 513, 160.

⁽²⁷⁾ Gillespie, R. J.; Kent, J. P.; Sawyer, J. F.; Slim, D. R.; Tyrer, J. D. Inorg. Chem. 1981, 20, 3799.